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Anomalous acoustic reflection on a sliding interface or a shear band
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We study the reflection of an acoustic plane wave from a steadily sliding planar interface with velocity-
strengthening friction or a shear band in a confined granular medium. The corresponding acoustic impedance
is utterly different from that of the static interface. In particular, the system being open, the energy of an
in-plane polarized wave is no longer conserved, the work of the external pulling force being partitioned
between frictional dissipation and gdjof either sign of coherent acoustic energy. Large values of the friction
coefficient favor energy gain, while velocity strengthening tends to suppress it. An interface with infinite elastic
contrast(one rigid medium andv-independen{Coulom} friction exhibits spontaneous acoustic emission, as
already shown by Nosonovsky and Adaphst. J. Eng. Sci39, 1257(2001)]. But this pathology is cured by
a moderately larg® strengthening of friction, or, for systems with not too large friction coefficients, by any
finite elastic contrast. We show thé) positive gain should be observable for rough-on-flat multicontact
interfaces andii) a sliding shear band in a granular medium should give rise to sizable reflection, which opens
a promising possibility for the detection of shear localization.
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I. INTRODUCTION tion of relative motion, the boundary condition is now pro-
vided by the dynamic friction law, which states that the shear
The question of the origin and nature of shear localizatiorand normal stresses are proportional. Obviously, such a dis-
in disordered systems, such as soft glasses or confined grareentinuity of the boundary conditions must result in a dis-
lar media, which are jammed at equilibrium, but flow when continuous change of the acoustic reflection and transmission
sheared beyond a threshold stress, is a long standing onepefficients when the system is set into sliding.
Due, in particular, to recent progress in theoretical descrip- This was pointed out already long ago by Cletal. [3],
tions, it is presently the subject of renewed interest. Hencevho studied the reflection of a sound wave propagating in a
the need for identifying appropriate, noninvasive methods oplane orthogonal to the sliding direction, and polarized in the
experimental investigation which could complement the opplane of incidence on an interface with the Coulomb fric-
tical and NMR imaging ones, recently put to use by Pignortional behavior(constant friction coefficient However, due
et al.[1], and by Coussatt al.[2]. We intend to show in this to the choice of this particular geometry, they overlooked an
paper that the propagation of sound pulses appears asirgeresting effect. Indeed, the sliding system is an open one:
promising possibility. Namely, we will show that the pres- energy is being pumped in from an external source—the ex-
ence of a shear band of thickness small compared with theernal driving machine which imposes the sliding velocity.
acoustic wavelength should give rise to strong anomalouSo, as soon as the acoustic displacement field has a nonzero
reflection of a transverse acoustic signal for well defined incomponent, in the interfacial plane, along the direction of the
cidence ranges. Such a method could therefore provide sliding motion, additional mechanical wokkf a priori ei-
relatively handy fingerprint of shear localization in confinedther sign is extracted from the external source, and interfa-
granular media. cial acoustic scattering is no longer energy-conserving. This
An extreme case of localized shear flow is that of fric- opens, in principle, the possibility of acoustic gain at reflec-
tional sliding of the interface between two cohesive macro4ion, i.e., conversion of incoherent into coherent mechanical
scopic solids. In such a configuration, the very structure oenergy—quite an exciting prospect indeed.
the system prelocalizes shear to the nanometer-thick layer Now, from the point of view of the propagation of an
which forms the molecular adhesive contactThe role of  acoustic signal of wavelength, a shear band of thickness
the above-mentioned threshold stress is played here by thie<\ in a confined granular medium appears as the equiva-
so-called static friction force. Below this threshold, the inter-lent of a frictional interface between two identical solids.
face is elastically pinnefammed, and responds elastically Indeed, the band can then be considered as a surface of me-
to a shearing force. So, the corresponding mechanical boundhanical discontinuity between the nonsliding adjacent re-
ary condition is simply that the displacement fields in thegions, which behave a&lisordered elastic solids. Experi-
two media must be fully continuous across the interface. Butmental studies by rock mechaniciang,5] of systems
beyond this shear level, sliding sets in and, along the direceonstituted of two bulk rock pieces separated by an inter-
posed layer of granular materiatalled “gouge”) have es-
tablished that in such systenis sliding occurs in a narrow
*Permanent address: Faculty of Mathematics and Physics, Charlésand within the gouge andi) the dynamics is ruled by a

University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic. standard solid friction law, the associated friction coefficients
TAssocieau Centre National de la Recherche Scientifique et awhaving a magnitude comparable with those for solids in di-
Universites Paris VI et Paris VII. rect contact.
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Reflection and transmission of waves with a polarization
component along the sliding direction of an interface with
constant friction coefficient between dissimilar media have
been recently studied by Nosonovsky and Adgfisthough
in a different perspective. Namely, they focused primarily on
the possible generation of slip pulses—a dynamical feature
that seems to be specific of the pure Coulomb friction. In the
course of this paper we will rederive some of their results,
which will be extended to the more realistic case of velocity-
dependent friction and to the shear band problem.

This paper is organized as follows.

In Sec. 2, we first write down the equations for the most
general case of a monochromatic acoustic wave incident
upon a planar frictional interface between two semi-infinite
solids with different elastic moduli. We then specialize in
Sec. Il to the case where the elastic contrast between the two
media is very largge.g., a gel sliding on top of a glass
plate. We show that, if the stiffer medium is assumed strictly
nondeformable and friction taken to be Coulomb-like, the
reflection coefficient of a wave with the sliding direction and

polarization in the plane of incidence is highly pathological: ™. h diurv loci | d d
not only is a huge gain at reflection possible for some par!VIth réspect to mediurM at velocityv alongx, and towards

ticular incidence range, but spontaneous acoustic emissidfi<o' In this referen(ie state, tlﬁleomogeneoumorr_nal gn_d
from the surface is predicted—a result already obtained reShear stresses, andr7,, are related by the dynamic friction
cently by Nosonovsky and Adanig]. These singularities are law

to be related to those already found by Addi8k and Ran-

jith and Rice[9], in their studies of interfacial waves in the 1= — f(v)75,, (1)
same system. They result, as is well known in mechanics,

from the specific singular character which the Coulombwith f(v) the friction coefficient.

model, which takes the friction coefficient to be a mere con- An emitter linked to mediunM is sending from infinity
stant, shares with the Hill model of plasticity. Indeed, wetowards the interface a plane acoustic wave of frequency
show that(i) a very small finite relative compliance of the propagating in the; ,x, plane at incidence angle (Fig. 1)
stiffer medium is sufficient to destroy the acoustic emissionand polarized in the plane of incidence. That is, the associ-
singularity and(ii) improving upon the Coulomb description ated displacement has a finite component along the sliding
by taking into account a velocity-strengthening dependenceirection. In order to fix ideas, and for the sake of simplicity,
of the dynamic friction coefficient of the order of what is we restrict in most of what follows the algebraic formulation
measured for real systems also cures this singularity. Morero the case of a transveré&heay incident wave—the case of
over, the possibility of energy gain at reflection is found to bean incident longitudinaldilatationa) signal follows straight-

strongly dependent upon the strength of the velocity depenforwardly. The elastic displacement field,(,u,) in medium
dence, and hence on the type of system: while it should b& obeys the Lamequations

negligible for a gel-on-glass system, it might be observable
with a rough-on-flat multicontact interface in well defined

FIG. 1. Schematic representation of the system: a transverse
incident wave impinges at incidenaeonto the sliding interface,
giving rise to two reflected and two transmitted waves.

Medium M’ is assumed to be in a stationary sliding motion

2 2 2
incidence ranges. ulchm_{_(cf_c?r 97Uz C%ﬁ )
Section IV is devoted to the symmetric case of two me- axi IX10X% a?xg
chanically identical solids relevant to the shear band prob-
lem. In this situation, and when the velocity dependence of ey 72U Y
the friction coefficient is taken into account, we predict that Uzch—zﬂL(CE—C%)—lﬂLC%—z, 3
the sliding shear band should give rise to a clear acoustic &x% IX10X axf

signature—namely, a reflection coefficient with magnitude
typically of the order of unity for incident signals in well ¢, c; are the longitudinal and transverse sound velocities in

defined ranges of incidence angles. mediumM, and
Il. GENERAL FORMULATION Cz_,u CE 2(1—v) @
T, 2T 1-2y
Consider two elastically isotropic semi-infinite media poct 1-2v

and M’ with shear moduli and Poisson ratiog,p;u’,v")

and densities f,p’), occupying, respectively(Fig. 1) the  The solution of Eqs(2) and(3) reads

upper &,>0) and lower k,<0) half spaces, and in con-

tinuous contact with each other along the=0 plane. U, = ee' (a-el[g7iame 4 yeidmet geldX2], (5)
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: k. k . :
Up,= e—e'(kxl_a’t) — e arX2— a-e'QTX2+ﬂ%e'QLX2 ,
ar ar k

(6)

wheree specifies the amplitude of the incident wakes the
X1 component of its wave vector, and

w2

47 =K (7
CTL

with gy real positive and Rg =0 and Imq, =0.
In the lower mediunM’, which moves at velocity-v in
our reference frame, analogously,

Ui: Eei(kxl—wt)[are—iq'Tx2+ﬁ/e—iql'_xz], (8)

k q/
uézeei(kxl—wt) a/_,e—iq-’l-xz_ﬁ/?l-e—iql'_xz ’ (9)

ar
where
'’ 2 w'? 2
o'=wtvk, qr ‘=———k% (10
CTL

In order to determine the amplitude reflectiom, 8) and
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the solids is extremely compliant are macroscopic contacts
truly continuous. This is, for example, the case for elas-
tomers or gels.

On the other hand, the mere existence of a finite static
threshold proves that frictional dissipation results from the
triggering by the applied shear of structural instabilities. It is
now documented that the corresponding structural rearrange-
ment events take place in the nanometer-thick adhesive in-
terfacial layers, and affect volumes of, typically, nanometric
scale[11,12—comparable with the “shear transformation
zones” invoked by Falk and Lang¢t3] to model the plas-
ticity of amorphous solids. Let us cdil the size of such a
zone. A friction law represents the result ofatistical av-
erageover a large number of such dissipative events. So, it
can only make sense on a scale much larger thahat is
for kb<1.

All this means that boundary conditiorif§—(iv) above
must be understood as valid only on scales larger than some
cutoff length Ll=max(,d) of the order of, typically,(i) a
fraction of micrometer for conforming solid contacts, a
fraction of millimeter for the, more common, multicontact
interfaces.

Finally, sincev, now becomes a time-dependent quantity,
condition(iv) implies that we assume the friction relation to
hold instantaneously on the scae . It is known that this
does not apply to the case where the steady dtaig is
velocity weakening ¢ f/dv<0). Indeed, such behavior nec-
essarily results from the action of some underlying structural

transmission &’,3") coefficients into the transverse and dynamics leading to aging when sticking and rejuvenation
longitudinal channels, we must now specify the four boundypon sliding, such as that associated with the slow creep

ary conditions(BC'’s) to be satisfied along théeformed

M/M" interface.
Since the acoustic stresses we consider are s@éd),
we expect the contact to persist everywhere, so (ihator-

growth of the real area of contact relevant to multicontact
interfaceq 14,15. Then, the equations describing nonsteady
friction must involve explicitly at least one more dynamical
“state” variable, and condition(iv) becomes insufficient.

mal displacements on both sides of the interface are equaNote also that it is in this regime that steady sliding may be
u-n=u’-n, and mechanical equilibrium imposes continuity unstable with respect to stick slip.

of normal and shear stresg@i$ 7,,= 7, (iii) 7= 7. The
sliding velocity perturbation ,—v) being alsoO(e), v,

So, we restrict ourselves in what follows to the velocity-
strengthening casef/dv>0. This can be expected to hold,

remains positive(sliding persists everywhere, and we as- for rough-on-rough interfaces, only at sliding velocities in

sume that the dynamic friction condition now holdsally,
namely that, at each interfacial poifit) 7,;+ f(v,) 7,,=0.

the mm sec? range, large enough for rejuvenation effects to
be saturatefil6]. However, it has been shoyih7] to prevalil

These boundary conditions, which have been taken foflown to theumsec* range when working with rough-on-

granted in existing studies of interfacial waves and sheaflat interfaces where contacts keep their identity when slid-
fractures, actually imply important physical assumptions,ing, which makes contact area saturation easily realizable.
which should be made explicit. The position of our deformed interface is given by

On the one hand, th@nacroscopigcontact is supposed to
be continuous and homogeneous—hence the statement of
homogeneous stresses in the reference state. Now, it is well
known that such is not the prevalent case. Most interfaces,
being formed between rough solids, are actually constituteg§e assume from now on that acoustic deformations are
of a large, but rather sparse, set of microcontét®11, in  small enough for us to work in the linearized approximation.
between which th_e su.rfacl:.(_es are meqhanlcally free. Then, it $hen, the normal and tangent unit vectars are simply
clear that conditiong(i)-(iii) are valid only in a coarse-
grained sense, i.e., provided that the length scal&kaf the

Xg1(Xq,t) =Up(X;— U1 (X1,01)). (11

variation of the acoustic fields along is much larger than (&uz) 1

the average distancel between microcontacts, that is, - “ax, -

for kd<1 n(Xl vt) = (7Xl Xl,O,'[ ’ t(Xl 1t) = %)
Intercontact distances lie commonly in the range of hun- 1 IXy x1,01

dreds of micrometers. Only in the case where at least one of (12
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Let the stress field in, say, mediuM, be denotedri*j Then, using Eqs5), (6), (8), (9), and(13), the BC'’s yield
+67; (i,j=1,2), with the following set of four non homogeneous linear equations
for a,a’,B,B'":
S — O”Ui &UJ 2v s 13
i T M (9Xj OX; 1-2v ijukk ' ( ) k o k ql,_
——atB-—a'+ B =——, (22
Then, to first order, at the interface in medih ar K At k T
To=NT N =7x +5722—27*(%) (14) q2_k2 q12_k2
nn [T 22 12 (?Xl ’ _ZMa+M T 5 ,3"‘2#'&'_#, Tk2 BIZZM’
du, (23
Tot= Tao+ OT1o+ (Thy— 731 ( 0_)(1) (15
2_k2 rZ_kZ
d the local slidi loci ar Ll "+2u'ql B
and the local sliding velocity o a+2uq. B+ ¢ a'+2u'q/
i i T
v=v+(Uu—uj). (16) 2_ 2
_ gk 24
Conditions(i)—(iv) then become K ar (24
U,— U =0, 1
[uz 2]xl,0,t (17 q%—kz K2 q%—kz 7
5 5o ook (&uz &uz) 0 19 ar M Ot k M
Too—™ OToo— LT P =Y,
22 22 12 (9X1 (9X1 ot Afow
+—(a+p—a'~p")
Cr
Uy  duy
8719~ 0T (Thy— T3 )(__ _) =0, (19 g7 —K? ™ K| Afo
w2 Omat T Tl G T ) = Tt 2fkt — — |- ——, (25
. T Mmoo QT Cr
Ju . . .
8710+ F(0) 87pp— 7 a_)(2+f’(v)7-;2(ul—ui) =0, where we have defined
1 X1,0t
(20) f'(v)er |75
_ f( 71733 , 26)
wheref’(v)=df/dv, and we have set (v)
™ = —[15,— 1~ 2f(v) 175, (21)  which measures the dimensionless strength of the velocity-
' strengthening effect.
73,<0 (compressive normal stress,= —73,>0, and we Equations(22)—(25) above are relevant to the case of a
can reasonably assume sliding to occur under zero lateralansverse incident wave. We will also display some results
stress, i.e.y1;=0, so that, in generak* >0. for a longitudinal one. In this latter case, the only modifica-

Note that ther*-dependent terms in Eq$17)—(20), tion concerns the first terms in the right-hand sides) of
which account for the fact that the BC's must be enforcedEgs.(5) and(6) which give the expression of the total acous-
along thedeformedinterface, have usually been overlooked tic displacement field. This results in leaving the left hand
in previous works on interfacial waves. As will appear be-sides of the final equation®2)—(25) unchanged, only the
low, they give rise to corrections of the order af(«). In  rhs’s being modified.
the case of hard materials, externally applied stresses are in Since the general solution of our problem depends on a
practice always considerably smaller than elastic moduli, anthrge number of parametet®ur elastic moduli, two densi-
these corrections can safely be neglected. However, sudfes, the angle of incidence, the friction coefficient and its
may not be the case when dealing with very compliant maderivative, it will be more illuminating to focus on a few
terials such as gels or elastomers. For example, for the casémple cases, namely, that of very large elastic contrast
of gel-glass interface§l8] sliding stress levels may be a (quasi-non-deformable mediurM’), and the symmetric
sizable fraction ofu, and the full expressions should be case of two identical materials, relevant to the problem of
retained. One can of course argue that nonlinear elasticitghear band detection. Finally, we will limit ourselves to the
effects would also result in corrections of the order ofstrongly subsonic sliding velocity regime compatible with
(7*/w), and should therefore be considered on the samexperimental realization, namely, of the order of millime-
footing. However, many very compliant materials are knownters per second at most. For this reason, we will systemati-
to be linear up to very large deformations—e=g0.4 for the  cally take, in all numerical calculationg’=w. We have
gelatin gels studied in Ref.18]. For these materials the checked that this approximation is totally unimportant in all
above-mentioned corrections should thus be relevant. the cases considered below.
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Ill. LARGE ELASTIC CONTRAST CASE 3
We consider here the case of maximum asymmetry, where 2.5
mediumM’ is considerably stiffer than mediuM. In order ol

to disentangle the respective effects of the elastic contrast 2
ratioR= '/ u and of the velocity dependence of friction, we

first treat the extra simple limit of a nondeformable medium -
M’ and of the pure Coulomb friction, then examine how the 2 4
results thus obtained are modifiéd when R is large but
finite and(ii) whenf’(v)#0.

. N /1 .
-%0 -60 -30 0 30 60 90
angle of incidence

A. Nondeformable mediumM’ and the Coulomb friction

The boundary conditions reduce to imposing that 0
and 7,,+fr,,=0 along thex,=0 plane. Equation§22)—

(25) become, in thiR *=f"=0 limit, wherea’=8"=0, 3
I
k a. p k @7 2.5} !
—a— = P ¥
ar k ar 5 e
5 oL
k2_ 2 k2_ 2 k2_ 2 ] 1.5: : b
I otk|as| —2q +F— 0T g 9T g K
T k ar 2 1L !
(28) v
. . . . 0.51l \\
which yield for theT—T and T—L reflection coefficients, MmUY
2 —%0 —éO —3.0 0 3.0 6b 90
_ 4fac _ 4fk angle of incidence
a—l-l——A , ——q A (29
T FIG. 2. Relative powersv,;(8)(1,J=T,L) reflected from the
where interface between a compliant medium and a rigid one versus inci-
dence angled (in degrees Friction is velocity independentR
K K2 =0, f=0.2,cy/c . =0.5. Incident wavea) transversew,t (—),
A:qL(_+ %) +f( Gr— 20, - _)_ (30 W (=) (b longitudinal v, (—), Wi (- -
ar ar

where(- - -) stands for the average over the acoustic period.
We then easily provésee the Appendixthat this is exactly
equal to the net acoustic energy flux

Note that, forff —0+, and for incident waves propagating
towardsx;>0 (k>0), A>0. That is, at least in the limit of
weak friction and in this incidence range, cleady>1,8
>0, and the reflected energy flux is larger than the incident
one. In order to try and clear up thi priori surprising
prediction, let us look in more detail into the question of

W, = (Wrep) —(Winc). (32

In other words, a sliding frictional interface is, in prin-

energy balance in our system. Consider the volumef a
slice of unit depth alongs; of mediumM, limited by its area
S(—L<x;<L) along the interface, and the semicylind&r

ciple, able to transform external incoherent mechanical work
into coherent acoustic radiation, i.e., to act as an “acoustic
laser.” In order to make this more precise, we plot in Fig.

of radiusL (|__>oo) In the situation we are Considering, of 2(a) the relative powers reflected into tAeandL channels,
an incident wave of constant amplitude, the average over agiven by (see the Appendix

acoustic period of the elastic energy stored witliis time

independent. This means that energy conservation simply

imposes that the net energy flux at infinity,., flowing out

of C.., associated with the acoustic waves, must equal the
increment associated with the acoustic perturbation of the
work injected per unit time into the system via the work of

the stresses acting on the moving interfadg,,, which is

wrr=|al?, (33
WTL:ng'—|g|2 if g, is real,
k
=0 if g, is imaginary, (39

pumped from the driving machine. This is proved in detall inagainst the incidence angte=sin~Y(c;k/w) and forf=0.2,
the Appendix, where we show that, in the present case of & /¢ —0.5. It is seen that, for all positive incidences, a

nondeformable mediurM’, per unit area o5

<Wext>:<_ul7'12>’ (31

transverse incident wave is predicted to be notably amplified
upon reflection, while the power in tHe channel remains
quite small, even close t6,;,,=sin *(cr/c,) beyond which
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theL wave becomes evanescent, where it is maximum. How- 4
ever, a much more surprising result, already derived by
Nosonovsky and Adani¥] is thatw andwy, are found to
diverge at a negative incidenced,,, where the denomina-
tor A [Eq. (30)] of the expressions fow and 8 [Eq. (29)]
vanishes. Using Eq.7), the conditionA =0 reads

2 . P

ct f cos 29 sin 6 4L
AT — 1 z

c? sirt 0 1—fsin26 ’ (35) / ‘tv l

which is easily (_:hecked graphically to have a single negative _%0 80 _30 0 30 60 %
solution — 6., with 6.,<6y;,,, whatever the values dfand angle of incidence
of cr/c. . The smaller the value of, the closeré., ap-
proachesé;,,. In the case shown in Fig.(8, 6im— 0,
=7'. In the casdFig. 2(b)] of L incidence, the correspond- 4
ing singularity occurs foré close above—90°. In other
words, in this admittedly oversimplified limirigid medium ;
M’, the pure Coulomb friction homogeneous sliding at A
constant velocity is impossible: indeed, any infinitesimal per- i '
turbation is able to trigger the emission, all along the inter- :
face, of a coupled set of transverse and longitudinal acoustic
waves, ofa priori undetermined amplitude, traveling, re-
spectively, at angle§., and sirTl[\/cTZ/(chsinzacr)—1] in the
back direction—x;. On the one hand this entails that an
infinite external energy would be pumped in. On the other 0
hand, as soon as the local interfacial velocity will vanish, the -30.2
interface will stop(stick). So this pathologic behavior signals
that homogeneous sliding is here absolutely unstable—a sig- fiG. 3. Evolution of the relative reflected powes(6) with
nature to be added to that provided by the existence in suChastic contrast rati@ for the Coulombic friction.d is measured in
systems of amplified interfacial waves, first identified andgegreesf=0.2,c;/c,=0.5, R=c(---), 40 (- - -), 20 (~--), 10
studied by Adam$8], which lead to the question of ill pos- (—). (a) Full incidence range(b) blowup for 8 close to — 6;i,
edness of the problem of interfacial slip pulses studied by=—30°.
several authors and recently synthetized by Ranijith and Rice
[9]. Whether or not the stable mode Qf sliding for our modeIAS seen above, the zero df always occurs fom, < 6
interface would be a set of square slip pulses such as calcu- . er
lated in Ref.[7] is out of the reach of this work. We will Whereq, ' and her-lca,-|s real.-On the other hand., It appears
rather concentrate on a different question, namely, how rog;‘g ];)OfrgT\’/\bhﬁ)cl:Jr:eV\I/?jgIg?/zgéscgri?nﬂgf;flfﬁm% Sg),(no
e - ! s ) o EX-
bust is this pathology? Does it persist in the presende) af ists, and one finds that, for small but fine *, & and 3 no

finite elastic compliance of the stiffer mediukh’ and(ii) a ) o L .
velocity-strengthening dependence of the friction coeffi-lo"'ger diverge, but exhibit, in the vicinity of 6, a maxi-

. o H H !
cient? We now consider successively these two possibilitiednUm ©f orderR: a finite compliance of mediurM’, how-
ever small it is, is sufficient to kill the pathology found in the

totally rigid limit. This we have confirmed by computing the
relative reflected powens,;(1,J=T,L) for various values of
Let us now consider the case of a large but finite elastidR and f=0.2. The results fow;t are shown in Fig. 3: the
contrast ratiocR=u'/u>1. We assume for the sake of sim- smaller the value oR, the lower the maximum ofv, which
plicity equality of the Poisson ratios=v’. In this case, reduces to a few units fdR<=40. Of course, in practice, for
except for quasinormal incidence ang@§‘L<0, there is R>1, the very large values of the reflection coefficients at
total reflection at the interface, with only evanescent transmaximum mean that a very small incident amplitude
mission into mediunM’. « and 8 must now be obtained by would suffice to induce a finite response, such thatu,
solving the full Eqs.(22)—(25) for constantf. Except in the  would vanish, leading to interfacial stick—i.e., homogeneous
vicinity of 6=—6,,, a finite R™* simply acts as a regular slip, though no longer absolutely unstable from a strict math-
perturbation, leading to a correctio®(R™1). For 6 ematical point of view, would be very weakly stable,
~— 0., however, one must consider in detail the behavioras it could not resist perturbations of finite but very small
of the determinantD of system(22)—(25). To first order amplitude.
in R~ 1, Let us, however, point out that the behavior depicted in
Fig. 3 is specific of not too large friction coefficients ortig
DxA(gr,qu) +R™T(ar,q,,07,4))- (36)  the case showrf=0.2). Indeed, Nosonovsky and Adafi/§

A,

Wit
N
.)/
“A7,
©

Wrr
n
i
1
i
1
4
o

30 208
angle of incidence

B. Finite elastic contrast and the Coulomb friction
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have found that the spontaneous emission pathology is 4
present, for any given finite contra® provided that the
friction coefficient exceeds &-dependent threshold value
[19] fin(R), which increases with the contrast from its mini-
mum valuef,,(R=1)=0.48, while exhibiting a divergent
behavior forR>1. For example, foR=10, f;,>1. Now,

for a majority of wearless systems, friction coefficients in the
low velocity regime (typically up to the mm/sec range
needed to perform well controlled acoustic reflection experi- 1 /

ments do not exceed typically 0.5. For these, the above con- BN
clusions will be valid. If, howeverf=0.5, the behavior is R
more complicated: the pathology is absent R f,}(f), 2 60 30 o 30 e %0
but reappears for smaller elastic contrasts, in which case it angle of incidence

becomes essential to look into the effect of the velocity de-

pendence of friction.

R
-

C. Infinite elastic contrast and v-strengthening friction

The problem is now specified by Eq&2) and (24) in
which «’'=pB"=0, and the position of the singularity of
a, B, if any, is therefore given by the zero of

v

k

k2
— 2 —_
Or—20L CIT)

(37

cr |k ar

of(v) <QL k)

angle of incidence

where the dimensionless parameter measuring the velocity-

dependence effect is defined by ER6): FIG. 4. Evolution of the relative reflected power(6) with
strenghA of the velocity dependence of the friction coefficient for
f'(v)cr |7.*2<2| rigid medium M’. 6 is measured in degreed,=0.2,ct/c,
=— . =05R=w, A= 0(—), 1 (- - -), 2 (---). (@ Full incidence
f(v) M range;(b) blowup for # close to— 6,;;,= —30°. Two more curves,

. . i for A=0.5 (- - ), 0.9(thin full line), show the shift and narrowing
. Wher_l sol_vmg numerically fon,=0, we _f'nd that t_he of the singularity asA=A.,=1 is approached. FOA=A_,, the
singularity disappears foh=A;,. More precisely, we find  yeak amplitude becomes finite.

that, asA increases, the zero af, approaches- 6;;,, , which

it reaches foA=A_,, beyond which it disappears, due to the

fact that no zero can occur in the regime wherelthveave is

evanescent. The threshold valédg, is independent of the

value off(v), but it depends upon the sound velocity ratio.

For a reasonable choice of this parametar/€, <0.7), A, a+tp+1=0, (38)

is at most a few units. For example, for the presently used

valuect/c =0.5, we obtainA,,=1. This behavior is illus- that is, due to the high relative cost of increasing its instan-

trated in Fig. 4, where we plot the relative reflected poweraneous velocity, the interface remains locked to the homo-

wrt against incidence angle for various values\oft is also  geneous sliding state ang=0.

seen that the larger the value Af the smaller the gain at So, for gel-glass sytems, acoustic reflection should not in

reflection. It appears that at another characteriticalue  practice be able to distinguish between the static and the

(A=2 for our parameter valugsthe gain becomes negative sliding interfaces.

(wrr<<1) for all incidences. That is, a strenghteningde- Another realization of the high elastic contrast situation is

pendence of is very efficient to kill the amplification effect. provided by the multicontact interface between rough glassy
It is therefore important to evaluate an order of magnitudePMMA and atomically flat silanized glass, recently studied

of A for real interfaces with a large elastic contrast, a goodoy Bureauet al.[17]. For this coupleu’/uw=20. Thanks to

example of which is that of gel-glass couples. Frictional slid-the flatness of the glass surface, it is possible to saturate the

ing at the interface between glass and a 5% gelatin aqueowstow growth of the real area of contact, which is responsible,

gel has recently been studied in detail by Baumbeegeal.  in the case of rough-on-rough systems, for the velocity-

[18]. Using their data, we find that, far in the mmsec!  weakening behavior of the dynamic friction coefficient and

range, f'(v)/f(v)~2x10°secm?, while (cq|73,)/u) of the associated stick-slip dynamics. Then, for

~2 msec?, so thatA~4x10% is a very large number. =1 umsec?, f(v) is velocity strenthening and of the form

In this A>1 limit, the rigid mediumM’ version of Eq.
(24) reduces, to lowest order A%, to
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angle of incidence angle of incidence
FIG. 5. Evolution of relative reflected powers with increasfag FIG. 6. Same plot as in Fig. 5, but for an incidéntvave. (a)

IncidentT wave,R=20,f=0.2,cy/c,=0.5.A= 0(—),1(---), 2 wy(6), (b) w 1(6).
(---). @ wyr(6), (b) wr (6). The height of the peak foH
=—6im is maximum, but finite, forA=1. 6 is measured in

comparison with the case of the nonmoving interfégg. 7)
degrees.

lead us to the following conclusions.

(i) The more favorable channels for observing gain at re-
flection are the diagonal(L andTT) ones.

(i) In both cases, a very narrow peakvafreminiscent of
the singularity obtained in the limit of the Coulomb friction
where f,~0.2, and {~(2-4)x10°2. With upyya ©O0 @ rigid substrate, is predipteq fo=— 6y, . .However,
=1 GPa,c;=10° msec %, and under normal stresses of the due to its narrowness, observing it would certainly be exces-
order of 5 kPa, one gets sively demanding in terms of directional accuracy.

(iii ) It thus appears more feasible to investigate one of the
two following configurationsL L at large negative incidence
A~ 100~ 200. (40) angles, in the range of 45°, andTT at large positive inci-
dencef~60°.

(iv) Gain decreases very rapidly with increasigi.e.,
That i, for sliding velocities in the 10am sec * rangeAis ~ With decreasing [see Eq(40)]: while, for A=1 it reaches
typically of the order of 1-2. up to 20% inLL and 35% inTT, already forA=2 it has

Finally, note that, since in this configuration the averagePractically collapsed to zero. So, according to E4)), the
distance between the micrometric regions which form the?€St situation corresponds to the largest possible driving ve-
real area of contact is of the order of a fraction of millimeter, |0Citi€S, in practice in the range of a fraction of mm/sec.
such an experiment would ask for acoustic signals in the With these conditions in mind, it seems quite possible to
range of a few hundred kHz at most, in order for our con-obtain substantlal_ acoustic gain at reflection on a sliding
tinuum description to be valid. rough-on-flat multicontact interface.

The relative powers reflected into the two channelsTfor
and L incident waves under these conditions are plotted in
Figs. 5 and 6, foA=0,1,2.(Since in this case typical values
of 7*/u andv/cy are <10 °, calculations have been per-  We now turn to the opposite limit where mediuvh and
formed for 7 =0, o' =w.) Inspection of these results and M’ have the same elastic properties. laigriori relevant to

f(v)=fol 1+ ¢ In

v
—) } , (39
Uo

Uumsec?

IV. SYMMETRIC CASE
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3 - - - - - also expected to be, for low shearing rates, of the order of a
few D, kD<1 also ensures that we can safely neglect it
2.5 when dealing with our reflection-transmission problem.
ol ] Laboratory experiments on the frictional behavior of lay-
2 ers of granular rock confined between granite pla&5],
* sl | a and of glass bead assembli&l] have shown that sheared
- confined granular media obey standard friction laws—
z

namely, beyond a static threshold,,= —fr,,. However,
the velocity dependence of the dynamic friction coefficient is
not yet very clearly established. The data on rock point to-
| wards weakening at low velocities. However, they are
% e0 30 o 30 e 90 strongly dependent upon the level of humidity. This, together
angle of incidence with the very small size of the grains used in these experi-
ments, strongly suggests that capillary condensation around
the intergrain Hertz contacts is responsible for a slow

3 strengthening of the medium, interrupted by sliding, which
o5l should become negligible either at low humidity or for larger
) grains. On the other hand, in the absence of such slow tran-
of ) sients, since granular systems are essentially athermal, one
5 expects logarithmic dynamic strengthening of the type found
* 1.5} 1b for multicontact interfacegsee Eq(40)], which results from
r thermal activation effect§11,12), to be completely negli-
= == == gible. If such is the caséwould bev independent in the low
/ WA Pt N velocity, quasistatic sliding regime. Note that this is what has
0.5/, \ .. S A been found by Gainard et al. [21] for glass beads com-
! JLA L A/ ' pletely immersed in water—though under relatively weak
_%o -60 -30 0 30 60 90 confinement. For this systerfi=0.2. Preliminary results on
angle of incidence highly confined glass bead&2] indicatef=0.4 and a very

small velocity-strengthening effect, if any.

So, let us first consider the simplified case of the pure
Coulomb friction A=0). We then solve the corresponding
version of Eqs(22)—(25) where we neglect*/u, since, for
the case of multicontact interfaces between two pieces of théhe confined granular systems made of hard matefgaish
same material. However, the above-mentioned rough-on-fla@ds glass or stegwhich we have in mind, under ordinary
configuration is inappropriate in this case, since the asperitiegxperimental conditionf20,23, this does not exceed, typi-
on the rough surface would give rise on the flat one to uncally, 10" at most. Moreover, as we are interested here in
avoidable and poorly qualified plastic damage and wear efstrongly subsonic sliding velocitiesv{cy<10"°—10"°),
fects. On the other hand, as already mentioned, in the roughs’ = w.
on-rough configuration where such problems are irrelevant, The results for the four relative reflected powers are plot-
geometric aging interrupted by motion results in a velocity-ted in Fig. 8 for the casé=0.2: while, in theTT channel,
weakening behavior of(v) for velocities up to at least the for negatived there is loss at reflectiowr is seen to be
mm sec ! range, not very easy to access in a stationary slidsizable everywhere in the range- @iy ;6im) where a
ing laboratory experiment. So, such symmetric solid on solidoropagating- reflected wave exists, as well as for quasigraz-
interfaces turns out not to be well adapted in practice to tesng conditions. Ford= = 6;;,,, the reflectance curve exhibits
our predictions. cusplike maxima—a standard behavior for multichannel

The most interesting case, as already mentioned in Sec. $cattering cross sections at the closing point of a channel.
is that of an established shear band, in particular, in a highlybout 6= 6,;,,, we even predict a gain of more than 50%,
confined granular medium. In such highly disordered syswhich becomes much larger fdr=0.4. In the other three
tems, internal stress inhomogeneitighe so-called stress- channels,w is much smaller—except, for theL one, in
chain phenomengnof course give rise to scattering of quasigrazing conditions which are hardly realizable
acoustic waves. However, this is all the smaller that the efin practice.
fective acoustic wavelength in the medium is larger with  This behavior is to be contrasted with what is expected
respect to the correlation length of stress fluctuations, knowfrom nonlocalized homogeneous shear sliding, namely, un-
to be of the order of a few grain diametebsonly. In this  disturbed propagation all through the sample. So, one ex-
kD<1 limit, as shown by experiments on the propagation ofpects the following to happen after starting to shear a con-
acoustic pulse§20], where one can separate out unambigu-fined sample at a constant rate, if a transverse acoustic pulse
ously the signal corresponding to the propagation of a “co-is sent into the granular pack in the direction normal to the
herent pulse,” a description in terms of an effective acousticshearing plane. At very short times, when the stress has not
medium is legitimate. Note that, as shear band thickness iget reached the sliding threshold, the system experiences uni-

FIG. 7. Static interface: relative powers reflected from incident
wave (a) transversewrt (—), wr (- - -); (b) longitudinal, w
(—), w_t (- --). R=20,c1/c =0.5. 6 is measured in degrees.
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FIG. 9. Evolution of the relative reflected powex(6) with

3: ' ' ' ! strenghA of the velocity dependence of the friction coefficient for
250 ! symmetric caseR=1. 6 is measured in degree$§=0.2,ct/c_
: | =0.5.A= 0(—), 1(---), 2 (---).
-2 Y unstable against spontaneous emission ffer0.5. If this
z 1 5_'. : b happens to be the case for some granular materials, the ques-
- 1 ' tion of the absence or presence of velocity strengthening, and
E ' of its magnitude, would become crucial: eith&rwill be
\ ! large enough to stabilize the steady sliding shear band, or up
05F “~-__ ! to now unsuspected effecfsuch as unsteady localization
T~ ' might arise—a question which remains completely open for
S T W the moment.
20 -60 -30 0 30 60 90

angle of incidence V. CONCLUSION

~ FIG. 8. Elastically symmetric caseRE1) and the Coulomb In summary, from the above results, we conclude to the
friction (A=0): relative powers reflected from incident wal®  interest of performing experimental studies of the reflection
transversewrr (—), wre (- - -); (b) longitudinal,wy (—), Wit of acoustic pulses on sliding solid interfaces and shear bands,
(---). £=0.2,¢r/c,=0.5. 8 is measured in degrees. the potential interest of which is different in each case.

As discussed in Sec. Ill C, experiments with a rough-on-
flat multicontact interface open the possibility of obtaining
acoustic gain, through the conversion by the frictional sys-
etem of incoherent mechanical energy pumped from the driv-
dng system into coherent acoustic vibrations. However, such
coherent signathe reflected pulse should reappear, but with experimgnts are certainly Qeljcate to realize, since they ask
a distinctly shorter traveling timehus providing a clear sig- for work_mg at non-no_rmal |nC|denc_es, _an_d, due to t_he effect

: gof velocity strengthen_lrjg of_ dynamic friction co_eff|C|ents, at
length is reduced, so will be the attenuation due to scatterin]Ot Very small velocities, in the range of typically a few
by stress fluctuations, making it more easy to detect than thBundredum/sec. , _
former signal. Finally, when sliding is stopped, the situation On_ t_he other hand, acoustic pulse reflec_tlon_ appears as a
should revert practically to that before shearing, though th romising method for detecting Sheaf Iocal_lzatlon In a con-
density contrasbp/p, of the order of a few percent at most, ined granular m_ed!um. The.best conﬂggraﬂon.—a transverse
associated with the shear bafig4] still persists. Indeed, pulse at.normal |nC|den(_:e—|s.more easily reahzaple, since it
then, wyr=~(8p/p)?(dwlc)? is negligibly small, and pulse may be implemented with a single transducer acting as both

reflection only occurs, again, at the bottom end of the conEMitter and receiver. Moreover, the expected signafare
tainer. strongly reduced transit time before the return of the re-

The question is then to check how robust the reflectanc{aleCt.ed pulsg should t_)e easy to identify—its._presence con-
characteristics predicted féx=0 are with respect to a pos- iIrming at the same time the expected quasiindependence of

sible, though probably small, velocity-strengthening depenIhe sliding stress on the sliding velocn'y. . :
dence of the friction coefficient. It is seen in Fig. 9 that, we there_zfore st_rongly hope that this work will motivate
although, as expected;; decreases a& grows, at normal such experiments in the near future.

incidence it remains non-negligible up to the sizable value
A=2, where it still is of the order of 25%. Again, in view of
the results of Nosonovsky and Adaifg, a word of caution B.V. gratefully acknowledges the hospitality of Universite
is in order. They predict that a symmetric system should bdParis VII.

form elastic deformation, the incident pulse will give rise to
a “coherent” reflected one, which will have traveled way and
back across the whole containeAfter the initial sliding

transient corresponding to the gradual installation of th
shear band, during which fluctuations are expected to kill th
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Introducing this into Eq(A2), we may single out the steady
flow component ofy by averaging over the period w:

() =3(—i0u’6+iwu0s7), (A5)

where the overbar denotes complex conjugation. The time
averagg W) of the total elastic energy per unit length of the

V region for a stationary irradiation is zero. Integration of the
time average of EqAl) then yields a balance equation for
the steady time averaged energy flows across the surface of
V:

f ds<1>.ﬁ=JdS(—<J>)-ﬁ, (A6)
Co S

FIG. 10. Energy flows for rigid mediurivi’.

with n the outer normal of/. With the sign conventions of

Fig. 10, we obtain the following relation for the gai,. ,

defined as the imbalance between the incident and reflected
We restrict ourselves to the case of a rigid substrate wittenergy flows:

an infinite elastic contrad®®= '/ u—o considered in Sec. . . . . .

lIl A. This situation is sketched in Fig. 10, which concerns W, = (W) + (W) = (Winc) =(Wexp, (A7)

specifically the case of a transverse wave incident below the h

critical angle 6,;,,, so that also the longitudinal reflected where

wave is propagating. In our two-dimensional geometry, the : C

incident beam irradiates a stripy of the interface perpen- (W) +(W0) =(Weer)-

dicular to the sliding directiow, and extending from-Loto  The energy flows associated with the plane wave beams

Lo along this direction. It has an areg per unit length  .qssing the dome., are easily obtained, if we use the well
alongxs. The reflected beams stem from the irradiated aregown steady current density for a plane w#28],
The beams are wide enough to make the fringe effects neg-

ligible and easy to exclude as additive constants to the prin- [(3)L7l=2pw?cL 7|UJ?,

cipal quantities proportional t6,. The S, strip is now over-

lapped by a wider regioB stretching from—L to L such that  valid for both polarizations; the quantity is a possibly

a semicylindrical domeC., raised over it encloses the re- complex amplitude. The plane waves appearing in(Bq)
gions of beam overlap and interfererfes well as the fields are defined in Eqs(5) and (6). The coefficientse, 3 were

of attenuated waves, should they ayisehe bottom of the obtained in Sec. Il A. The three total energy flows are the
dome is infinitesimally above the interface, so that the equaproducts of current densities and beam cross sections. Thus,
tions of motion(2) and(3) are valid both inside and on the ’
surface of the regiol enclosed by the dome and the bottom (W- y=1pwic EZ(L) Crdr
plane. Then, the total elastic energyinside the dome can inc/ = 2@ LT ctOt 1)
be studied using the differential energy conservation law

APPENDIX: ENERGY BALANCE AT
A FRICTIONAL INTERFACE

25,26 (see also Ref(3 . 2 ¢
125,26 (see also Ret3) Wiy =1paerelal’ | T, (ag
. . Crar @
diVJ+e:O, i.e., ]€'€+e:O, (Al)
N1 2. 21,2 @ CLOL
wheree is the local energy density, whose form will not be (W) =zpw’cLe’| Bl (ﬂ) So—~

needed, and the energy current dengity given by
The ratios of the flowswry=(W;)/(W;,o) (J=T,L) then
j=—u-7, ie., 3= _[ij, (A2)  have the form given in Eq$33) and(34) in thg main text.
It remains to interpret the right-hand sid@/.,, of Eq.
We consider elastic fields having a steady homogeneou@7). First, using explicit expression&2) and (A5) for j,
component and a single frequency acoustic component. A§), we obtain[cf. Eq. (31)]
usual, in bilinear expressions such as E42), we turn to

real parts of all quantities involved, which is consistent in a . _ .
linear theory. Thus, we have (Wexy = LodS<U1712>a (A9)
u(r,t)=Rg —iwu’(r)e"'*1], (A3)

(Wewd= [_aSH (100050 + 1o
i So
7(r,t)=7 +Rg 8°(r)e 1. (Ad) o)
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Equation(A10) may serve to check EgA7) explicitly. Two (F)y=F*.

points appear explicitly(i) Only those irradiated parts of the ) ) _

interface wherai, #0 do contribute; the effect is connected LhSeFfvﬁggﬁjdmchi?zﬁﬂgg ;totrﬁg o?/(fetgﬁ \i?gci';;usth]; Ss
with the free sliding of the interface points along the S“dmgthe power spent by this force iBs v, independently of the

direction. (ii) All three waves superimposed ent@Ne,p.  presence of oscillatory acoustic fields. It is now easy to see
This is particularly remarkable in the case of an evanedcent that

wave, in which there is no longitudinal flow at infinity, yet

the energy gain at the interface cannot be obtained correctly _ s ;
without including theL wave contribution right at the inter- Fsv= JSdS((v W) F) +{(Wexy- (ALD)
face.
At each point of the interface, the external force acting on' he first term is the power dissipated against the friction
mediumM is forces:v —u is the local relative interfacial velocity, while
has only a frictional component along the interface. Equation
F=7n=7 -n+ Re(67) - n=E* + SF. (A11) thus expresses the partitioning of the total work done
per unit time by the external force into tHareversibly
The time average is dissipated power and the net acoustic gain.
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