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Anomalous acoustic reflection on a sliding interface or a shear band

C. Caroli and B. Velicky´*
Groupe de Physique des Solides,† 2 place Jussieu, 75251 Paris Cedex 05, France

~Received 24 January 2003; published 10 June 2003!

We study the reflection of an acoustic plane wave from a steadily sliding planar interface with velocity-
strengthening friction or a shear band in a confined granular medium. The corresponding acoustic impedance
is utterly different from that of the static interface. In particular, the system being open, the energy of an
in-plane polarized wave is no longer conserved, the work of the external pulling force being partitioned
between frictional dissipation and gain~of either sign! of coherent acoustic energy. Large values of the friction
coefficient favor energy gain, while velocity strengthening tends to suppress it. An interface with infinite elastic
contrast~one rigid medium! andv-independent~Coulomb! friction exhibits spontaneous acoustic emission, as
already shown by Nosonovsky and Adams@Int. J. Eng. Sci.39, 1257~2001!#. But this pathology is cured by
a moderately largeV strengthening of friction, or, for systems with not too large friction coefficients, by any
finite elastic contrast. We show that~i! positive gain should be observable for rough-on-flat multicontact
interfaces and~ii ! a sliding shear band in a granular medium should give rise to sizable reflection, which opens
a promising possibility for the detection of shear localization.

DOI: 10.1103/PhysRevE.67.061301 PACS number~s!: 45.70.2n, 43.40.1s, 46.55.1d
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I. INTRODUCTION

The question of the origin and nature of shear localizat
in disordered systems, such as soft glasses or confined g
lar media, which are jammed at equilibrium, but flow wh
sheared beyond a threshold stress, is a long standing
Due, in particular, to recent progress in theoretical desc
tions, it is presently the subject of renewed interest. He
the need for identifying appropriate, noninvasive methods
experimental investigation which could complement the
tical and NMR imaging ones, recently put to use by Pign
et al. @1#, and by Coussotet al. @2#. We intend to show in this
paper that the propagation of sound pulses appears
promising possibility. Namely, we will show that the pre
ence of a shear band of thickness small compared with
acoustic wavelength should give rise to strong anomal
reflection of a transverse acoustic signal for well defined
cidence ranges. Such a method could therefore provid
relatively handy fingerprint of shear localization in confin
granular media.

An extreme case of localized shear flow is that of fr
tional sliding of the interface between two cohesive mac
scopic solids. In such a configuration, the very structure
the system prelocalizes shear to the nanometer-thick l
which forms the molecular adhesive contact~s!. The role of
the above-mentioned threshold stress is played here by
so-called static friction force. Below this threshold, the int
face is elastically pinned~jammed!, and responds elasticall
to a shearing force. So, the corresponding mechanical bo
ary condition is simply that the displacement fields in t
two media must be fully continuous across the interface. B
beyond this shear level, sliding sets in and, along the di
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tion of relative motion, the boundary condition is now pr
vided by the dynamic friction law, which states that the sh
and normal stresses are proportional. Obviously, such a
continuity of the boundary conditions must result in a d
continuous change of the acoustic reflection and transmis
coefficients when the system is set into sliding.

This was pointed out already long ago by Chezet al. @3#,
who studied the reflection of a sound wave propagating i
plane orthogonal to the sliding direction, and polarized in
plane of incidence on an interface with the Coulomb fr
tional behavior~constant friction coefficient!. However, due
to the choice of this particular geometry, they overlooked
interesting effect. Indeed, the sliding system is an open o
energy is being pumped in from an external source—the
ternal driving machine which imposes the sliding veloci
So, as soon as the acoustic displacement field has a non
component, in the interfacial plane, along the direction of
sliding motion, additional mechanical work~of a priori ei-
ther sign! is extracted from the external source, and inter
cial acoustic scattering is no longer energy-conserving. T
opens, in principle, the possibility of acoustic gain at refle
tion, i.e., conversion of incoherent into coherent mechan
energy—quite an exciting prospect indeed.

Now, from the point of view of the propagation of a
acoustic signal of wavelengthl, a shear band of thicknes
d!l in a confined granular medium appears as the equ
lent of a frictional interface between two identical solid
Indeed, the band can then be considered as a surface o
chanical discontinuity between the nonsliding adjacent
gions, which behave as~disordered! elastic solids. Experi-
mental studies by rock mechanicians@4,5# of systems
constituted of two bulk rock pieces separated by an in
posed layer of granular material~called ‘‘gouge’’! have es-
tablished that in such systems~i! sliding occurs in a narrow
band within the gouge and~ii ! the dynamics is ruled by a
standard solid friction law, the associated friction coefficie
having a magnitude comparable with those for solids in
rect contact.
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C. CAROLI AND B. VELICKÝ PHYSICAL REVIEW E 67, 061301 ~2003!
Reflection and transmission of waves with a polarizat
component along the sliding direction of an interface w
constant friction coefficient between dissimilar media ha
been recently studied by Nosonovsky and Adams@6#, though
in a different perspective. Namely, they focused primarily
the possible generation of slip pulses—a dynamical fea
that seems to be specific of the pure Coulomb friction. In
course of this paper we will rederive some of their resu
which will be extended to the more realistic case of veloci
dependent friction and to the shear band problem.

This paper is organized as follows.
In Sec. 2, we first write down the equations for the m

general case of a monochromatic acoustic wave incid
upon a planar frictional interface between two semi-infin
solids with different elastic moduli. We then specialize
Sec. III to the case where the elastic contrast between the
media is very large~e.g., a gel sliding on top of a glas
plate!. We show that, if the stiffer medium is assumed stric
nondeformable and friction taken to be Coulomb-like, t
reflection coefficient of a wave with the sliding direction a
polarization in the plane of incidence is highly pathologic
not only is a huge gain at reflection possible for some p
ticular incidence range, but spontaneous acoustic emis
from the surface is predicted—a result already obtained
cently by Nosonovsky and Adams@7#. These singularities are
to be related to those already found by Adams@8#, and Ran-
jith and Rice@9#, in their studies of interfacial waves in th
same system. They result, as is well known in mechan
from the specific singular character which the Coulom
model, which takes the friction coefficient to be a mere co
stant, shares with the Hill model of plasticity. Indeed, w
show that~i! a very small finite relative compliance of th
stiffer medium is sufficient to destroy the acoustic emiss
singularity and~ii ! improving upon the Coulomb descriptio
by taking into account a velocity-strengthening depende
of the dynamic friction coefficient of the order of what
measured for real systems also cures this singularity. M
over, the possibility of energy gain at reflection is found to
strongly dependent upon the strength of the velocity dep
dence, and hence on the type of system: while it should
negligible for a gel-on-glass system, it might be observa
with a rough-on-flat multicontact interface in well define
incidence ranges.

Section IV is devoted to the symmetric case of two m
chanically identical solids relevant to the shear band pr
lem. In this situation, and when the velocity dependence
the friction coefficient is taken into account, we predict th
the sliding shear band should give rise to a clear acou
signature—namely, a reflection coefficient with magnitu
typically of the order of unity for incident signals in we
defined ranges of incidence angles.

II. GENERAL FORMULATION

Consider two elastically isotropic semi-infinite mediaM
and M 8 with shear moduli and Poisson ratios (m,n;m8,n8)
and densities (r,r8), occupying, respectively,~Fig. 1! the
upper (x2.0) and lower (x2,0) half spaces, and in con
tinuous contact with each other along thex250 plane.
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Medium M 8 is assumed to be in a stationary sliding moti
with respect to mediumM at velocityv alongx1 and towards
x1,0. In this reference state, the~homogeneous! normal and
shear stressest22* andt12* , are related by the dynamic friction
law

t12* 52 f ~v !t22* , ~1!

with f (v) the friction coefficient.
An emitter linked to mediumM is sending from infinity

towards the interface a plane acoustic wave of frequencyv,
propagating in thex1 ,x2 plane at incidence angleu ~Fig. 1!
and polarized in the plane of incidence. That is, the ass
ated displacement has a finite component along the slid
direction. In order to fix ideas, and for the sake of simplici
we restrict in most of what follows the algebraic formulatio
to the case of a transverse~shear! incident wave—the case o
an incident longitudinal~dilatational! signal follows straight-
forwardly. The elastic displacement field (u1 ,u2) in medium
M obeys the Lame´ equations

ü15cL
2 ]2u1

]x1
2

1~cL
22cT

2!
]2u2

]x1]x2
1cT

2 ]2u1

]x2
2

, ~2!

ü25cL
2 ]2u2

]x2
2

1~cL
22cT

2!
]2u1

]x1]x2
1cT

2 ]2u2

]x1
2

, ~3!

cL ,cT are the longitudinal and transverse sound velocities
mediumM, and

cT
25

m

r
,

cL
2

cT
2

5
2~12n!

122n
. ~4!

The solution of Eqs.~2! and ~3! reads

u15eei (kx12vt)@e2 iqTx21aeiqTx21beiqLx2#, ~5!

FIG. 1. Schematic representation of the system: a transv
incident wave impinges at incidenceu onto the sliding interface,
giving rise to two reflected and two transmitted waves.
1-2
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ANOMALOUS ACOUSTIC REFLECTION ON A SLIDING . . . PHYSICAL REVIEW E67, 061301 ~2003!
u25eei (kx12vt)F k

qT
e2 iqTx22a

k

qT
eiqTx21b

qL

k
eiqLx2G ,

~6!

wheree specifies the amplitude of the incident wave,k is the
x1 component of its wave vector, and

qT,L
2 5

v2

cT,L
2

2k2, ~7!

with qT real positive and ReqL>0 and ImqL>0.
In the lower mediumM 8, which moves at velocity2v in

our reference frame, analogously,

u185eei (kx12vt)@a8e2 iqT8x21b8e2 iqL8x2#, ~8!

u285eei (kx12vt)Fa8
k

qT8
e2 iqT8x22b8

qL8

k
e2 iqL8x2G , ~9!

where

v85v1vk, qT,L8 25
v82

c8T,L
2

2k2. ~10!

In order to determine the amplitude reflection (a,b) and
transmission (a8,b8) coefficients into the transverse an
longitudinal channels, we must now specify the four boun
ary conditions~BC’s! to be satisfied along thedeformed
M /M 8 interface.

Since the acoustic stresses we consider are small,O(e),
we expect the contact to persist everywhere, so that~i! nor-
mal displacements on both sides of the interface are eq
u•n̂5u8•n̂, and mechanical equilibrium imposes continu
of normal and shear stresses~ii ! tnn5tnn8 , ~iii ! tnt5tnt8 . The
sliding velocity perturbation (v I2v) being alsoO(e), v I
remains positive~sliding persists! everywhere, and we as
sume that the dynamic friction condition now holdslocally,
namely that, at each interfacial point~iv! tnt1 f (v I)tnn50.

These boundary conditions, which have been taken
granted in existing studies of interfacial waves and sh
fractures, actually imply important physical assumptio
which should be made explicit.

On the one hand, the~macroscopic! contact is supposed t
be continuous and homogeneous—hence the stateme
homogeneous stresses in the reference state. Now, it is
known that such is not the prevalent case. Most interfa
being formed between rough solids, are actually constitu
of a large, but rather sparse, set of microcontacts@10,11#, in
between which the surfaces are mechanically free. Then,
clear that conditions~i!-~iii ! are valid only in a coarse
grained sense, i.e., provided that the length scale 2p/k of the
variation of the acoustic fields alongx1 is much larger than
the average distanced between microcontacts, that i
for kd!1.

Intercontact distances lie commonly in the range of h
dreds of micrometers. Only in the case where at least on
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the solids is extremely compliant are macroscopic conta
truly continuous. This is, for example, the case for ela
tomers or gels.

On the other hand, the mere existence of a finite st
threshold proves that frictional dissipation results from t
triggering by the applied shear of structural instabilities. It
now documented that the corresponding structural rearra
ment events take place in the nanometer-thick adhesive
terfacial layers, and affect volumes of, typically, nanomet
scale @11,12#—comparable with the ‘‘shear transformatio
zones’’ invoked by Falk and Langer@13# to model the plas-
ticity of amorphous solids. Let us callb the size of such a
zone. A friction law represents the result of astatistical av-
erageover a large number of such dissipative events. So
can only make sense on a scale much larger thanb, that is
for kb!1.

All this means that boundary conditions~i!–~iv! above
must be understood as valid only on scales larger than s
cutoff length L5max(b,d) of the order of, typically,~i! a
fraction of micrometer for conforming solid contacts,~ii ! a
fraction of millimeter for the, more common, multiconta
interfaces.

Finally, sincev I now becomes a time-dependent quanti
condition~iv! implies that we assume the friction relation
hold instantaneously on the scalev21. It is known that this
does not apply to the case where the steady statef (v) is
velocity weakening (d f /dv,0). Indeed, such behavior nec
essarily results from the action of some underlying structu
dynamics leading to aging when sticking and rejuvenat
upon sliding, such as that associated with the slow cr
growth of the real area of contact relevant to multicont
interfaces@14,15#. Then, the equations describing nonstea
friction must involve explicitly at least one more dynamic
‘‘state’’ variable, and condition~iv! becomes insufficient.
Note also that it is in this regime that steady sliding may
unstable with respect to stick slip.

So, we restrict ourselves in what follows to the velocit
strengthening cased f /dv.0. This can be expected to hold
for rough-on-rough interfaces, only at sliding velocities
the mm sec21 range, large enough for rejuvenation effects
be saturated@16#. However, it has been shown@17# to prevail
down to themm sec21 range when working with rough-on
flat interfaces where contacts keep their identity when s
ing, which makes contact area saturation easily realizabl

The position of our deformed interface is given by

x2I~x1 ,t !5u2„x12u1~x1,0,t !…. ~11!

We assume from now on that acoustic deformations
small enough for us to work in the linearized approximatio
Then, the normal and tangent unit vectorsn̂, t̂ are simply

n̂~x1 ,t !5S 2S ]u2

]x1
D

x1,0,t

1
D , t̂~x1 ,t !5S 1

S ]u2

]x1
D

x1,0,t

D .

~12!
1-3
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C. CAROLI AND B. VELICKÝ PHYSICAL REVIEW E 67, 061301 ~2003!
Let the stress field in, say, mediumM, be denotedt i j*
1dt i j ( i , j 51,2), with

dt i j 5mF]ui

]xj
1

]uj

]xi
1

2n

122n
d i j ukkG . ~13!

Then, to first order, at the interface in mediumM,

tnn5nit i j nj5t22* 1dt2222t12* S ]u2

]x1
D , ~14!

tnt5t12* 1dt121~t22* 2t11* !S ]u2

]x1
D ~15!

and the local sliding velocity

v I5v1~ u̇12u̇18!. ~16!

Conditions~i!–~iv! then become

@u22u28#x1,0,t50, ~17!

Fdt222dt228 22t12* S ]u2

]x1
2

]u28

]x1
D G

x1,0,t

50, ~18!

Fdt122dt128 1~t22* 2t11* !S ]u2

]x1
2

]u28

]x1
D G

x1,0,t

50, ~19!

Fdt121 f ~v !dt222t*
]u2

]x1
1 f 8~v !t22* ~ u̇12u̇18!G

x1,0,t

50,

~20!

where f 8(v)5d f /dv, and we have set

t* 52@t22* 2t11* 22 f ~v !t12* #, ~21!

t22* ,0 ~compressive normal stress!, t12* 52t22* .0, and we
can reasonably assume sliding to occur under zero la
stress, i.e.,t11* 50, so that, in general,t* .0.

Note that thet* -dependent terms in Eqs.~17!–~20!,
which account for the fact that the BC’s must be enforc
along thedeformedinterface, have usually been overlooke
in previous works on interfacial waves. As will appear b
low, they give rise to corrections of the order of (t* /m). In
the case of hard materials, externally applied stresses a
practice always considerably smaller than elastic moduli,
these corrections can safely be neglected. However, s
may not be the case when dealing with very compliant m
terials such as gels or elastomers. For example, for the
of gel-glass interfaces@18# sliding stress levels may be
sizable fraction ofm, and the full expressions should b
retained. One can of course argue that nonlinear elast
effects would also result in corrections of the order
(t* /m), and should therefore be considered on the sa
footing. However, many very compliant materials are kno
to be linear up to very large deformations—e.g.,.0.4 for the
gelatin gels studied in Ref.@18#. For these materials th
above-mentioned corrections should thus be relevant.
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Then, using Eqs.~5!, ~6!, ~8!, ~9!, and~13!, the BC’s yield
the following set of four non homogeneous linear equatio
for a,a8,b,b8:

2
k

qT
a1

qL

k
b2

k

qT8
a81

qL8

k
b852

k

qT
, ~22!

22ma1m
qT

22k2

k2
b12m8a82m8

q8T
22k2

k2
b852m,

~23!

m
qT

22k2

qT
a12mqLb1m8

q8T
22k2

qT8
a812m8qL8b8

5m
qT

22k2

qT
, ~24!

FqT
22k2

qT
22 f k1

t*

m

k2

qT
Ga1F2qL1 f

qT
22k2

k
2

t*

m
qLGb

1
A fv

cT
~a1b2a82b8!

5FqT
22k2

qT
12 f k1

t*

m

k2

qT
G2

A fv

cT
, ~25!

where we have defined

A5
f 8~v !cT

f ~v !

ut22* u
m

, ~26!

which measures the dimensionless strength of the veloc
strengthening effect.

Equations~22!–~25! above are relevant to the case of
transverse incident wave. We will also display some res
for a longitudinal one. In this latter case, the only modific
tion concerns the first terms in the right-hand side~rhs! of
Eqs.~5! and~6! which give the expression of the total acou
tic displacement field. This results in leaving the left ha
sides of the final equations~22!–~25! unchanged, only the
rhs’s being modified.

Since the general solution of our problem depends o
large number of parameters~four elastic moduli, two densi-
ties, the angle of incidence, the friction coefficient and
derivative!, it will be more illuminating to focus on a few
simple cases, namely, that of very large elastic cont
~quasi-non-deformable mediumM 8), and the symmetric
case of two identical materials, relevant to the problem
shear band detection. Finally, we will limit ourselves to t
strongly subsonic sliding velocity regime compatible wi
experimental realization, namely,v of the order of millime-
ters per second at most. For this reason, we will system
cally take, in all numerical calculations,v85v. We have
checked that this approximation is totally unimportant in
the cases considered below.
1-4
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III. LARGE ELASTIC CONTRAST CASE

We consider here the case of maximum asymmetry, wh
mediumM 8 is considerably stiffer than mediumM. In order
to disentangle the respective effects of the elastic cont
ratioR5m8/m and of the velocity dependence of friction, w
first treat the extra simple limit of a nondeformable mediu
M 8 and of the pure Coulomb friction, then examine how t
results thus obtained are modified~i! when R is large but
finite and~ii ! when f 8(v)Þ0.

A. Nondeformable mediumM 8 and the Coulomb friction

The boundary conditions reduce to imposing thatu250
and tnt1 f tnn50 along thex250 plane. Equations~22!–
~25! become, in thisR215 f 850 limit, wherea85b850,

k

qT
a2

qL

k
b5

k

qT
, ~27!

Fk22qT
2

qT
12 f kGa1F22qL1 f

k22qT
2

k Gb5
k22qT

2

qT
22 f k,

~28!

which yield for theT→T andT→L reflection coefficients,

a511
4 f qL

D
, b5

4 f k2

qTD
, ~29!

where

D5qLS k

qT
1

qT

k D1 f S qT22qL2
k2

qT
D . ~30!

Note that, forf→01, and for incident waves propagatin
towardsx1.0 (k.0), D.0. That is, at least in the limit o
weak friction and in this incidence range, clearlya.1,b
.0, and the reflected energy flux is larger than the incid
one. In order to try and clear up thisa priori surprising
prediction, let us look in more detail into the question
energy balance in our system. Consider the volumeV of a
slice of unit depth alongx3 of mediumM, limited by its area
S(2L,x1,L) along the interface, and the semicylinderC`

of radiusL (L→`). In the situation we are considering, o
an incident wave of constant amplitude, the average ove
acoustic period of the elastic energy stored withinV is time
independent. This means that energy conservation sim
imposes that the net energy flux at infinity,Ẇ` , flowing out
of C` , associated with the acoustic waves, must equal
increment associated with the acoustic perturbation of
work injected per unit time into the system via the work
the stresses acting on the moving interface,Ẇext , which is
pumped from the driving machine. This is proved in detail
the Appendix, where we show that, in the present case
nondeformable mediumM 8, per unit area ofS,

^Ẇext&5^2u̇1t12&, ~31!
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where^•••& stands for the average over the acoustic peri
We then easily prove~see the Appendix! that this is exactly
equal to the net acoustic energy flux

Ẇ`5^Ẇre f l&2^Ẇinc&. ~32!

In other words, a sliding frictional interface is, in prin
ciple, able to transform external incoherent mechanical w
into coherent acoustic radiation, i.e., to act as an ‘‘acou
laser.’’ In order to make this more precise, we plot in F
2~a! the relative powers reflected into theT andL channels,
given by ~see the Appendix!

wTT5uau2, ~33!

wTL5
qTqL

k2
ubu2 if qL is real,

50 if qL is imaginary, ~34!

against the incidence angleu5sin21(cTk/v) and for f 50.2,
cT /cL50.5. It is seen that, for all positive incidences,
transverse incident wave is predicted to be notably ampli
upon reflection, while the power in theL channel remains
quite small, even close tou l im5sin21(cT /cL) beyond which

FIG. 2. Relative powerswIJ(u)(I ,J5T,L) reflected from the
interface between a compliant medium and a rigid one versus i
dence angleu ~in degrees!. Friction is velocity independent.R
5`, f 50.2, cT /cL50.5. Incident wave~a! transverse,wTT ~—!,
wTL ~- - -!; ~b! longitudinal ,wLL ~—!, wLT ~- - -!.
1-5
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C. CAROLI AND B. VELICKÝ PHYSICAL REVIEW E 67, 061301 ~2003!
theL wave becomes evanescent, where it is maximum. H
ever, a much more surprising result, already derived
Nosonovsky and Adams@7# is thatwTT andwTL are found to
diverge at a negative incidence2ucr , where the denomina
tor D @Eq. ~30!# of the expressions fora and b @Eq. ~29!#
vanishes. Using Eq.~7!, the conditionD50 reads

AcT
2

cL
2

2sin2u52
f cos 2u sinu

12 f sin 2u
, ~35!

which is easily checked graphically to have a single nega
solution2ucr with ucr,u l im , whatever the values off and
of cT /cL . The smaller the value off, the closerucr ap-
proachesu l im . In the case shown in Fig. 2~a!, u l im2ucr
.78. In the case@Fig. 2~b!# of L incidence, the correspond
ing singularity occurs foru close above290°. In other
words, in this admittedly oversimplified limit~rigid medium
M 8, the pure Coulomb friction!, homogeneous sliding a
constant velocity is impossible: indeed, any infinitesimal p
turbation is able to trigger the emission, all along the int
face, of a coupled set of transverse and longitudinal acou
waves, ofa priori undetermined amplitude, traveling, re
spectively, at anglesucr and sin21@AcT

2/(cL
2sin2ucr)21# in the

back direction2 x̂1. On the one hand this entails that a
infinite external energy would be pumped in. On the oth
hand, as soon as the local interfacial velocity will vanish,
interface will stop~stick!. So this pathologic behavior signa
that homogeneous sliding is here absolutely unstable—a
nature to be added to that provided by the existence in s
systems of amplified interfacial waves, first identified a
studied by Adams@8#, which lead to the question of ill pos
edness of the problem of interfacial slip pulses studied
several authors and recently synthetized by Ranjith and R
@9#. Whether or not the stable mode of sliding for our mod
interface would be a set of square slip pulses such as ca
lated in Ref.@7# is out of the reach of this work. We wil
rather concentrate on a different question, namely, how
bust is this pathology? Does it persist in the presence of~i! a
finite elastic compliance of the stiffer mediumM 8 and~ii ! a
velocity-strengthening dependence of the friction coe
cient? We now consider successively these two possibilit

B. Finite elastic contrast and the Coulomb friction

Let us now consider the case of a large but finite ela
contrast ratioR5m8/m@1. We assume for the sake of sim
plicity equality of the Poisson ratiosn5n8. In this case,
except for quasinormal incidence anglesq8T,L

2 ,0, there is
total reflection at the interface, with only evanescent tra
mission into mediumM 8. a andb must now be obtained by
solving the full Eqs.~22!–~25! for constantf. Except in the
vicinity of u52ucr , a finite R21 simply acts as a regula
perturbation, leading to a correctionO(R21). For u
'2ucr , however, one must consider in detail the behav
of the determinantD of system ~22!–~25!. To first order
in R21,

D}D~qT ,qL!1R21G~qT ,qL ,qT8 ,qL8 !. ~36!
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As seen above, the zero ofD always occurs forucr,u l im
whereqL , and henceD, is real. On the other hand, it appea
that, forqT,L8 pure imaginary,G is a complex quantity. So, no
zero ofD which would evolve continuously from2ucr ex-
ists, and one finds that, for small but finiteR21, a andb no
longer diverge, but exhibit, in the vicinity of2ucr , a maxi-
mum of orderR: a finite compliance of mediumM 8, how-
ever small it is, is sufficient to kill the pathology found in th
totally rigid limit. This we have confirmed by computing th
relative reflected powerswIJ(I ,J5T,L) for various values of
R and f 50.2. The results forwTT are shown in Fig. 3: the
smaller the value ofR, the lower the maximum ofw, which
reduces to a few units forR&40. Of course, in practice, fo
R@1, the very large values of the reflection coefficients
maximum mean that a very small incident amplitudee

would suffice to induce a finite response, such thatv1u̇1
would vanish, leading to interfacial stick—i.e., homogeneo
slip, though no longer absolutely unstable from a strict ma
ematical point of view, would be very weakly stabl
as it could not resist perturbations of finite but very sm
amplitude.

Let us, however, point out that the behavior depicted
Fig. 3 is specific of not too large friction coefficients only~in
the case shown,f 50.2). Indeed, Nosonovsky and Adams@7#

FIG. 3. Evolution of the relative reflected powerwTT(u) with
elastic contrast ratioR for the Coulombic friction.u is measured in
degrees,f 50.2,cT /cL50.5, R5`(•••), 40 ~- - -!, 20 (-•-•), 10
~—!. ~a! Full incidence range;~b! blowup for u close to2u l im

5230°.
1-6
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ANOMALOUS ACOUSTIC REFLECTION ON A SLIDING . . . PHYSICAL REVIEW E67, 061301 ~2003!
have found that the spontaneous emission pathology
present, for any given finite contrastR, provided that the
friction coefficient exceeds aR-dependent threshold valu
@19# f th(R), which increases with the contrast from its min
mum value f th(R51).0.48, while exhibiting a divergen
behavior forR@1. For example, forR.10, f th.1. Now,
for a majority of wearless systems, friction coefficients in t
low velocity regime ~typically up to the mm/sec range!
needed to perform well controlled acoustic reflection exp
ments do not exceed typically 0.5. For these, the above c
clusions will be valid. If, however,f *0.5, the behavior is
more complicated: the pathology is absent forR. f th

21( f ),
but reappears for smaller elastic contrasts, in which cas
becomes essential to look into the effect of the velocity
pendence of friction.

C. Infinite elastic contrast and v-strengthening friction

The problem is now specified by Eqs.~22! and ~24! in
which a85b850, and the position of the singularity o
a,b, if any, is therefore given by the zero of

DA5qLS k

qT
1

qT

k D1 f S qT22qL2
k2

qT
D

1A
v f ~v !

cT
S qL

k
1

k

qT
D , ~37!

where the dimensionless parameter measuring the velo
dependence effect is defined by Eq.~26!:

A5
f 8~v !cT

f ~v !

ut22* u
m

.

When solving numerically forDA50, we find that the
singularity disappears forA>Acr . More precisely, we find
that, asA increases, the zero ofDA approaches2u l im , which
it reaches forA5Acr , beyond which it disappears, due to th
fact that no zero can occur in the regime where theL wave is
evanescent. The threshold valueAcr is independent of the
value of f (v), but it depends upon the sound velocity rat
For a reasonable choice of this parameter (cT /cL,0.7), Acr
is at most a few units. For example, for the presently u
valuecT /cL50.5, we obtainAcr51. This behavior is illus-
trated in Fig. 4, where we plot the relative reflected pow
wTT against incidence angle for various values ofA. It is also
seen that the larger the value ofA, the smaller the gain a
reflection. It appears that at another characteristicA value
(A52 for our parameter values!, the gain becomes negativ
(wTT,1) for all incidences. That is, a strenghteningv de-
pendence off is very efficient to kill the amplification effect

It is therefore important to evaluate an order of magnitu
of A for real interfaces with a large elastic contrast, a go
example of which is that of gel-glass couples. Frictional sl
ing at the interface between glass and a 5% gelatin aqu
gel has recently been studied in detail by Baumbergeret al.
@18#. Using their data, we find that, forv in the mm sec21

range, f 8(v)/ f (v)'23103 sec m21, while (cTut22* u/m)
'2 m sec21, so thatA'43103 is a very large number.
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In this A@1 limit, the rigid mediumM 8 version of Eq.
~24! reduces, to lowest order inA21, to

a1b1150, ~38!

that is, due to the high relative cost of increasing its inst
taneous velocity, the interface remains locked to the hom
geneous sliding state andu1>0.

So, for gel-glass sytems, acoustic reflection should no
practice be able to distinguish between the static and
sliding interfaces.

Another realization of the high elastic contrast situation
provided by the multicontact interface between rough gla
PMMA and atomically flat silanized glass, recently studi
by Bureauet al. @17#. For this couple,m8/m.20. Thanks to
the flatness of the glass surface, it is possible to saturate
slow growth of the real area of contact, which is responsib
in the case of rough-on-rough systems, for the veloc
weakening behavior of the dynamic friction coefficient a
of the associated stick-slip dynamics. Then, forv
*1 mm sec21, f (v) is velocity strenthening and of the form

FIG. 4. Evolution of the relative reflected powerwTT(u) with
strenghA of the velocity dependence of the friction coefficient f
rigid medium M 8. u is measured in degrees,f 50.2,cT /cL

50.5,R5`. A5 0 ~—!, 1 ~- - -!, 2 (-•-•). ~a! Full incidence
range;~b! blowup for u close to2u l im5230°. Two more curves,
for A50.5 (•••), 0.9 ~thin full line!, show the shift and narrowing
of the singularity asA5Acr51 is approached. ForA>Acr , the
peak amplitude becomes finite.
1-7
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C. CAROLI AND B. VELICKÝ PHYSICAL REVIEW E 67, 061301 ~2003!
f ~v !5 f 0F11z lnS v
v0

D G , ~39!

where f 0'0.2, and z'(2 –4)31022. With mPMMA
51 GPa,cT.103 m sec21, and under normal stresses of th
order of 5 kPa, one gets

A'
1002200

vmm sec21

. ~40!

That is, for sliding velocities in the 100mm sec21 range,A is
typically of the order of 1–2.

Finally, note that, since in this configuration the avera
distance between the micrometric regions which form
real area of contact is of the order of a fraction of millimet
such an experiment would ask for acoustic signals in
range of a few hundred kHz at most, in order for our co
tinuum description to be valid.

The relative powers reflected into the two channels foT
and L incident waves under these conditions are plotted
Figs. 5 and 6, forA50,1,2.~Since in this case typical value
of t* /m and v/cT are ,1025, calculations have been pe
formed for t* 50, v85v.! Inspection of these results an

FIG. 5. Evolution of relative reflected powers with increasingA.
IncidentT wave,R520, f 50.2,cT /cL50.5. A5 0 ~—!, 1 ~- - -!, 2
(-•-•). ~a! wTT(u), ~b! wTL(u). The height of the peak foru
52u l im is maximum, but finite, forA51. u is measured in
degrees.
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comparison with the case of the nonmoving interface~Fig. 7!
lead us to the following conclusions.

~i! The more favorable channels for observing gain at
flection are the diagonal (LL andTT) ones.

~ii ! In both cases, a very narrow peak ofw, reminiscent of
the singularity obtained in the limit of the Coulomb frictio
on a rigid substrate, is predicted foru.2u l im . However,
due to its narrowness, observing it would certainly be exc
sively demanding in terms of directional accuracy.

~iii ! It thus appears more feasible to investigate one of
two following configurations:LL at large negative incidenc
angles, in the range of245°, andTT at large positive inci-
denceu'60°.

~iv! Gain decreases very rapidly with increasingA, i.e.,
with decreasingv @see Eq.~40!#: while, for A51 it reaches
up to 20% inLL and 35% inTT, already forA52 it has
practically collapsed to zero. So, according to Eq.~40!, the
best situation corresponds to the largest possible driving
locities, in practice in the range of a fraction of mm/sec.

With these conditions in mind, it seems quite possible
obtain substantial acoustic gain at reflection on a slid
rough-on-flat multicontact interface.

IV. SYMMETRIC CASE

We now turn to the opposite limit where mediumM and
M 8 have the same elastic properties. It isa priori relevant to

FIG. 6. Same plot as in Fig. 5, but for an incidentL wave.~a!
wLL(u), ~b! wLT(u).
1-8
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ANOMALOUS ACOUSTIC REFLECTION ON A SLIDING . . . PHYSICAL REVIEW E67, 061301 ~2003!
the case of multicontact interfaces between two pieces of
same material. However, the above-mentioned rough-on
configuration is inappropriate in this case, since the asper
on the rough surface would give rise on the flat one to
avoidable and poorly qualified plastic damage and wear
fects. On the other hand, as already mentioned, in the rou
on-rough configuration where such problems are irrelev
geometric aging interrupted by motion results in a veloci
weakening behavior off (v) for velocities up to at least the
mm sec21 range, not very easy to access in a stationary s
ing laboratory experiment. So, such symmetric solid on so
interfaces turns out not to be well adapted in practice to
our predictions.

The most interesting case, as already mentioned in Se
is that of an established shear band, in particular, in a hig
confined granular medium. In such highly disordered s
tems, internal stress inhomogeneities~the so-called stress
chain phenomenon! of course give rise to scattering o
acoustic waves. However, this is all the smaller that the
fective acoustic wavelength in the medium is larger w
respect to the correlation length of stress fluctuations, kno
to be of the order of a few grain diametersD only. In this
kD!1 limit, as shown by experiments on the propagation
acoustic pulses@20#, where one can separate out unambig
ously the signal corresponding to the propagation of a ‘‘
herent pulse,’’ a description in terms of an effective acous
medium is legitimate. Note that, as shear band thicknes

FIG. 7. Static interface: relative powers reflected from incid
wave ~a! transverse,wTT ~—!, wTL ~- - -!; ~b! longitudinal, wLL

~—!, wLT ~- - -!. R520, cT /cL50.5. u is measured in degrees.
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also expected to be, for low shearing rates, of the order
few D, kD!1 also ensures that we can safely neglec
when dealing with our reflection-transmission problem.

Laboratory experiments on the frictional behavior of la
ers of granular rock confined between granite plates@4,5#,
and of glass bead assemblies@21# have shown that sheare
confined granular media obey standard friction laws
namely, beyond a static threshold,t1252 f t22. However,
the velocity dependence of the dynamic friction coefficien
not yet very clearly established. The data on rock point
wards weakening at low velocities. However, they a
strongly dependent upon the level of humidity. This, toget
with the very small size of the grains used in these exp
ments, strongly suggests that capillary condensation aro
the intergrain Hertz contacts is responsible for a sl
strengthening of the medium, interrupted by sliding, whi
should become negligible either at low humidity or for larg
grains. On the other hand, in the absence of such slow t
sients, since granular systems are essentially athermal,
expects logarithmic dynamic strengthening of the type fou
for multicontact interfaces@see Eq.~40!#, which results from
thermal activation effects@11,12#, to be completely negli-
gible. If such is the case,f would bev independent in the low
velocity, quasistatic sliding regime. Note that this is what h
been found by Ge´minard et al. @21# for glass beads com
pletely immersed in water—though under relatively we
confinement. For this system,f 50.2. Preliminary results on
highly confined glass beads@22# indicate f .0.4 and a very
small velocity-strengthening effect, if any.

So, let us first consider the simplified case of the pu
Coulomb friction (A50). We then solve the correspondin
version of Eqs.~22!–~25! where we neglectt* /m, since, for
the confined granular systems made of hard materials~such
as glass or steel! which we have in mind, under ordinar
experimental conditions@20,23#, this does not exceed, typi
cally, 1025 at most. Moreover, as we are interested here
strongly subsonic sliding velocities (v/cT,102521026),
v8.v.

The results for the four relative reflected powers are p
ted in Fig. 8 for the casef 50.2: while, in theTT channel,
for negativeu there is loss at reflection,wTT is seen to be
sizable everywhere in the range (2u l im ;u l im) where a
propagatingL reflected wave exists, as well as for quasigra
ing conditions. Foru56u l im the reflectance curve exhibit
cusplike maxima—a standard behavior for multichan
scattering cross sections at the closing point of a chan
About u5u l im , we even predict a gain of more than 50%
which becomes much larger forf 50.4. In the other three
channels,w is much smaller—except, for theLL one, in
quasigrazing conditions which are hardly realizab
in practice.

This behavior is to be contrasted with what is expec
from nonlocalized homogeneous shear sliding, namely,
disturbed propagation all through the sample. So, one
pects the following to happen after starting to shear a c
fined sample at a constant rate, if a transverse acoustic p
is sent into the granular pack in the direction normal to
shearing plane. At very short times, when the stress has
yet reached the sliding threshold, the system experiences

t

1-9
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C. CAROLI AND B. VELICKÝ PHYSICAL REVIEW E 67, 061301 ~2003!
form elastic deformation, the incident pulse will give rise
a ‘‘coherent’’ reflected one, which will have traveled way a
back across the whole container. After the initial sliding
transient corresponding to the gradual installation of
shear band, during which fluctuations are expected to kill
coherent signal,the reflected pulse should reappear, but w
a distinctly shorter traveling time, thus providing a clear sig
nature of shear localization. Note that, since its travel
length is reduced, so will be the attenuation due to scatte
by stress fluctuations, making it more easy to detect than
former signal. Finally, when sliding is stopped, the situati
should revert practically to that before shearing, though
density contrastdr/r, of the order of a few percent at mos
associated with the shear band@24# still persists. Indeed
then,wTT'(dr/r)2(dv/cT)2 is negligibly small, and pulse
reflection only occurs, again, at the bottom end of the c
tainer.

The question is then to check how robust the reflecta
characteristics predicted forA50 are with respect to a pos
sible, though probably small, velocity-strengthening dep
dence of the friction coefficient. It is seen in Fig. 9 tha
although, as expected,wTT decreases asA grows, at normal
incidence it remains non-negligible up to the sizable va
A52, where it still is of the order of 25%. Again, in view o
the results of Nosonovsky and Adams@7#, a word of caution
is in order. They predict that a symmetric system should

FIG. 8. Elastically symmetric case (R51) and the Coulomb
friction (A50): relative powers reflected from incident wave~a!
transverse,wTT ~—!, wTL ~- - -!; ~b! longitudinal, wLL ~—!, wLT

~- - -!. f 50.2, cT /cL50.5. u is measured in degrees.
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unstable against spontaneous emission forf *0.5. If this
happens to be the case for some granular materials, the q
tion of the absence or presence of velocity strengthening,
of its magnitude, would become crucial: eitherA will be
large enough to stabilize the steady sliding shear band, o
to now unsuspected effects~such as unsteady localization!
might arise—a question which remains completely open
the moment.

V. CONCLUSION

In summary, from the above results, we conclude to
interest of performing experimental studies of the reflect
of acoustic pulses on sliding solid interfaces and shear ba
the potential interest of which is different in each case.

As discussed in Sec. III C, experiments with a rough-o
flat multicontact interface open the possibility of obtainin
acoustic gain, through the conversion by the frictional s
tem of incoherent mechanical energy pumped from the d
ing system into coherent acoustic vibrations. However, s
experiments are certainly delicate to realize, since they
for working at non-normal incidences, and, due to the eff
of velocity strengthening of dynamic friction coefficients,
not very small velocities, in the range of typically a fe
hundredmm/sec.

On the other hand, acoustic pulse reflection appears
promising method for detecting shear localization in a co
fined granular medium. The best configuration—a transve
pulse at normal incidence—is more easily realizable, sinc
may be implemented with a single transducer acting as b
emitter and receiver. Moreover, the expected signature~a
strongly reduced transit time before the return of the
flected pulse! should be easy to identify—its presence co
firming at the same time the expected quasiindependenc
the sliding stress on the sliding velocity.

We therefore strongly hope that this work will motiva
such experiments in the near future.
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FIG. 9. Evolution of the relative reflected powerwTT(u) with
strenghA of the velocity dependence of the friction coefficient f
symmetric caseR51. u is measured in degrees,f 50.2,cT /cL

50.5. A5 0 ~—!, 1 ~- - -!, 2 (•-•).
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ANOMALOUS ACOUSTIC REFLECTION ON A SLIDING . . . PHYSICAL REVIEW E67, 061301 ~2003!
APPENDIX: ENERGY BALANCE AT
A FRICTIONAL INTERFACE

We restrict ourselves to the case of a rigid substrate w
an infinite elastic contrastR5m8/m→` considered in Sec
III A. This situation is sketched in Fig. 10, which concer
specifically the case of a transverse wave incident below
critical angle u l im , so that also the longitudinal reflecte
wave is propagating. In our two-dimensional geometry,
incident beam irradiates a stripS0 of the interface perpen
dicular to the sliding directionx1 and extending from2L0 to
L0 along this direction. It has an areaS0 per unit length
alongx3. The reflected beams stem from the irradiated a
The beams are wide enough to make the fringe effects n
ligible and easy to exclude as additive constants to the p
cipal quantities proportional toS0. TheS0 strip is now over-
lapped by a wider regionSstretching from2L to L such that
a semicylindrical domeC` raised over it encloses the re
gions of beam overlap and interference~as well as the fields
of attenuated waves, should they arise!. The bottom of the
dome is infinitesimally above the interface, so that the eq
tions of motion~2! and ~3! are valid both inside and on th
surface of the regionV enclosed by the dome and the botto
plane. Then, the total elastic energyW inside the dome can
be studied using the differential energy conservation
@25,26# ~see also Ref.@3#!

div¤1ė50, i.e., ¤,,,1ė50, ~A1!

wheree is the local energy density, whose form will not b
needed, and the energy current density¤ is given by

¤52u̇•t, i.e., ¤,52u̇ jt j , . ~A2!

We consider elastic fields having a steady homogene
component and a single frequency acoustic component
usual, in bilinear expressions such as Eq.~A2!, we turn to
real parts of all quantities involved, which is consistent in
linear theory. Thus, we have

u̇~r,t !5Re@2 ivu0~r!e2 ivt#, ~A3!

t~r,t !5t* 1Re@dt0~r!e2 ivt#. ~A4!

FIG. 10. Energy flows for rigid mediumM 8.
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Introducing this into Eq.~A2!, we may single out the stead
flow component of¤ by averaging over the period 2p/v:

^¤&5 1
2 ~2 ivu0dt01 ivu0dt0!, ~A5!

where the overbar denotes complex conjugation. The t
averagê W& of the total elastic energy per unit length of th
V region for a stationary irradiation is zero. Integration of t
time average of Eq.~A1! then yields a balance equation fo
the steady time averaged energy flows across the surfac
V:

E
C`

dS^¤&•n̂5E
S
dS~2^¤&!•n̂, ~A6!

with n̂ the outer normal ofV. With the sign conventions o
Fig. 10, we obtain the following relation for the gainẆ` ,
defined as the imbalance between the incident and refle
energy flows:

Ẇ`5^ẆT&1^ẆL&2^Ẇinc&5^Ẇext&, ~A7!

where

^ẆT&1^ẆL&5^Ẇre f l&.

The energy flows associated with the plane wave bea
crossing the domeC` are easily obtained, if we use the we
known steady current density for a plane wave@25#,

u^¤&L,Tu5 1
2 rv2cL,TuUu2,

valid for both polarizations; the quantityU is a possibly
complex amplitude. The plane waves appearing in Eq.~A7!
are defined in Eqs.~5! and ~6!. The coefficientsa,b were
obtained in Sec. III A. The three total energy flows are t
products of current densities and beam cross sections. T

^Ẇinc&5 1
2 rv2cTe2S v

cTqT
D 2

S0

cTqT

v
,

^ẆT&5 1
2 rv2cTe2uau2S v

cTqT
D 2

S0

cTqT

v
, ~A8!

^ẆL&5 1
2 rv2cLe2ubu2S v

cLkD 2

S0

cLqL

v
.

The ratios of the flowswTJ5^ẆJ&/^Ẇinc& (J5T,L) then
have the form given in Eqs.~33! and ~34! in the main text.

It remains to interpret the right-hand side^Ẇext& of Eq.
~A7!. First, using explicit expressions~A2! and ~A5! for ¤,
^¤&, we obtain@cf. Eq. ~31!#

^Ẇext&5E
S0

dŜ u̇1t12&, ~A9!

^Ẇext&5E
S0

dS1
2 ~2 ivu1

(0)dt12
(0)1 ivu1

(0)dt12
(0)!.

~A10!
1-11
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C. CAROLI AND B. VELICKÝ PHYSICAL REVIEW E 67, 061301 ~2003!
Equation~A10! may serve to check Eq.~A7! explicitly. Two
points appear explicitly:~i! Only those irradiated parts of th
interface whereu̇1Þ0 do contribute; the effect is connecte
with the free sliding of the interface points along the slidi
direction. ~ii ! All three waves superimposed enter^Ẇext&.
This is particularly remarkable in the case of an evanesceL
wave, in which there is no longitudinal flow at infinity, ye
the energy gain at the interface cannot be obtained corre
without including theL wave contribution right at the inter
face.

At each point of the interface, the external force acting
mediumM is

F5t•n̂5t* •n̂1Re~dt!•n̂[F* 1dF.

The time average is
J

c

. B

06130
tly

n

^F&5F* .

The averaged macroscopic force acting onS is thus FS
5SF* . MediumM 8 is pulled at the overall velocityv, thus
the power spent by this force isFS•v, independently of the
presence of oscillatory acoustic fields. It is now easy to
that

FS•v5E
S
dŜ ~v2u̇!•F&1^Ẇext&. ~A11!

The first term is the power dissipated against the frict
forces:v2u̇ is the local relative interfacial velocity, whileF
has only a frictional component along the interface. Equat
~A11! thus expresses the partitioning of the total work do
per unit time by the external force into the~irreversibly!
dissipated power and the net acoustic gain.
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